
126

PRACE POGLĄDOWE/REVIEWS

Endokrynologia Polska/Polish Journal of Endocrinology
Tom/Volume 61; Numer/Number 1/2010

ISSN 0423–104X

Izabella Czajka-Oraniec M.D., Ph.D., Department of Endocrinology, Medical Centre for Postgraduate Education, Bielanski Hospital,
80 Ceglowska St., 01–809 Warszawa, tel.: +48 22 834 31 31, e-mail: iczajka@cmkp.edu.pl�

Aromatase research and its clinical significance
Znaczenie kliniczne badań nad aromatazą

Izabella Czajka-Oraniec1, Evan R. Simpson2

1Department of Endocrinology, Medical Centre for Postgraduate Education, Warszawa, Poland
2Metabolism and Cancer Laboratory, Prince Henry’s Institute, Clayton, VIC, Australia

Abstract
Aromatase is a member of the cytochrome P450 superfamily that catalyzes the conversion of androgens (C19), namely testosterone and
androstenedione, into oestrogens (C18), oestradiol, and oestrone, respectively. The enzyme is active in various tissues in both females and
males, thus oestrogens are produced not only in gonads but also in extra-gonadal localizations such as brain, adipose tissue, breast, skin,
and bone. Aromatase gene CYP19A1 located on chromosome 15 comprises nine coding exons and a number of alternative non-coding first
exons that regulate tissue-specific expression. Studies on local regulation of aromatase expression and activity are important for under-
standing processes such as growth of oestrogen-dependent breast cancer. Rare clinical conditions of aromatase deficiency and excess have
revealed some new and unexpected oestrogen functions in metabolism and bone health in both women and men. They were further
studied using transgenic animal models such as aromatase knockout mice (ArKO) or (AROM+) mice overexpressing human aromatase.
Research on aromatase was important for its practical outcome as it contributed to the development of aromatase inhibitors (AIs), an
effective and safe group of drugs for the first-line endocrine therapy of breast cancer. Further studies are needed to establish AIs applica-
tion in other oestrogen-dependent conditions, to overcome the resistance in breast cancer patients, and to develop tissue-specific selective
inhibitors. (Pol J Endocrinol 2010; 61 (1): 126–134)
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Streszczenie
Aromataza jest enzymem należącym do rodziny cytochromu P450. Katalizuje reakcję hydroksylacji prowadzącą do powstania estroge-
nów: estradiolu i estronu z androgenowych substratów, odpowiednio: testosteronu i androstendionu. Aktywność enzymu i produkcję
estrogenów wykazano w różnych tkankach zarówno u kobiet, jak i u mężczyzn. Poza gonadami aromataza jest aktywna na przykład
w mózgu, tkance tłuszczowej, gruczole piersiowym, skórze i kościach. Gen aromatazy CYP19A1, zlokalizowany na chromosomie 15,
składa się z dziewięciu kodujących egzonów i alternatywnych niekodujących pierwszych egzonów, których swoista tkankowo transkryp-
cja reguluje ekspresję genu. Poznanie mechanizmów regulujących lokalną ekspresję i aktywność aromatazy przyczynia się między inny-
mi do lepszego zrozumienia procesów istotnych dla rozwoju estrogenozależnego raka piersi. Opisy klinicznych przypadków niedoboru
i nadmiaru aromatazy oraz analiza fenotypu myszy transgenicznych pozbawionych aromatazy (ArKO) lub z jej nadekspresją (AROM+)
ujawniły dotychczas nieznane i często zaskakujące funkcje estrogenów u obu płci. Badania podstawowe nad aromatazą znalazły swoje
praktyczne zastosowanie w pracach nad inhibitorami aromatazy. Stanowią one obecnie pierwszoplanowe leczenie hormonalne raka
piersi kobiet po menopauzie, w przypadku obecności receptorów estrogenowych w komórkach guza. Potrzebne są dalsze badania nad
zastosowaniem inhibitorów aromatazy w innych schorzeniach zależnych od estrogenów, nad przeciwdziałaniem rozwojowi oporności
powstającej w trakcie terapii oraz opracowaniem selektywnych inhibitorów swoistych tkankowo. (Endokrynol Pol 2010; 61 (1): 126–134)

Słowa kluczowe: aromataza, estrogeny, androgeny, inhibitory aromatazy, rak piersi

Aromatase — the key enzyme
in oestrogen biosynthesis

Aromatase is a member of the cytochrome P450 super-
family, a very large family of enzymes catalyzing incor-
poration of an atom of oxygen into an organic molecu-
le, called hydroxylases. These widespread membrane-
bound proteins are present in most animal, plant,  and
human tissues, such as the liver, and they are essential
for the synthesis of cholesterol and steroid hormones

and metabolism of xenobiotics and fatty acids. The com-
mon feature of the family is the presence of heme as
a prosthetic group that forms the active site. It contains
iron that can undergo oxidation and reduction. Redu-
ced nicotamide adenine dinucleotide phosphate
(NADPH) is required as a coenzyme for the reactions
catalyzed by cytochrome P450 enzymes. The name of
the group is taken from the wavelength of maximum
light absorption at 450 nm of the ferrous carbon mono-
xide complex [1–2].
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Human aromatase is a 58 kDa protein that was pu-
rified from placental microsomes in the 1980s [3–6]. The
protein is highly conserved among all vertebrates. In
the enzymatic complex with flavoprotein, NADPH-cy-
tochrome P450 reductase, it catalyzes a complex reac-
tion sequence that results in the conversion of andro-
gens (C19), namely testosterone and androstenedione,
into oestrogens (C18), oestradiol, and oestrone, respec-
tively [7–9] (Fig. 1).

Many different cell types have been shown to
express aromatase: granulosa cells, Leydig and Sertoli
cells, placental cells, neurons, preadipocytes and fibro-
blasts, vasculature smooth muscle cells, chondrocytes,
and osteoblasts [4–6, 10–18].  Thus, oestrogens are pro-
duced in various tissues, not only in those traditionally
known to be involved in that process, such as gonads
— ovaries and testes or placenta, but also brain, adipo-
se tissue, breast, skin, blood vessels, bone, and cartilage
[19]. Expression levels show interpersonal and regional
differences, and they are different at various stages of
life, e.g. foetal liver expresses aromatase, but it is not
present in adult liver [9]. In women of reproductive age,
the ovaries express high levels of aromatase and they
are the main source of oestrogens. After menopause
peripheral tissues become sites of oestrogen synthesis
of great importance. Similarly, in men,85% of oestra-
diol and more than 95% of oestrone is produced in extra-
glandular tissues as a result of aromatisation of circula-
ting androgens [19–20]. Oestrogens synthesized local-

ly in extragonadal sites mostly do not enter the circula-
tion but exert intracrine, autocrine, paracrine, and ju-
xtacrine effects, acting directly in the cells of synthesis
or on the neighbouring cells [16]. These interactions at
the tissue level are very difficult to measure in the clini-
cal setting, and they remain mostly unrecognized. Ho-
wever, it is believed nowadays that in the post-menopau-
sal breast, it is local oestrogen synthesis that determines
their tissue level and affects breast cancer risk [21].

Aromatase is encoded by a single copy of the
CYP19A1 gene located on the short arm of chromoso-
me 15 (15q21) [22–23]. It is approximately 120 kb long
and comprises 10 exons. Nine coding exons (II-X) span
approximately 30kb, and there are a number of alterna-
tive non-coding first exons which are expressed in a tis-
sue-specific manner. As various tissues utilize their own
promoters and associated enhancers and suppressors,
the tissue-specific regulation of oestrogen synthesis is
very complex. Although the transcripts for aromatase
have different 5’ ends in various tissues depending on
the promoter usage, these unique first exons are spli-
ced into a common 3’-junction upstream of the start of
translation, resulting in the synthesis of identical aro-
matase proteins [11, 24–25]. Thus, use of alternative pro-
moters does not affect protein structure but its expres-
sion level.

The first described distal promoter I.1, located ap-
proximately 89 kb upstream of exon II, drives transcrip-
tion in the placenta. On the other hand, the proximal
promoter found immediately upstream of exon II is the
main one utilized in the gonads. In between these two,
several other first exons and promoters have been iden-
tified, such as I.2 — placental minor, I.3 in adipose tis-
sue and breast cancer, I.4 in skin fibroblasts, preadipo-
cytes, and bone, I.5 — foetal, I.6 in bone, I.7 — epithe-
lial and overexpressed in breast cancer, and I.f in the
brain [10–11, 24–28].

Adipose promoter I.4 drives aromatase transcription
in normal adipose mesenchymal cells at a relatively low
level. Class 1 cytokines (IL-6, oncostatin M, and IL-11)
and TNF-a produced locally within the adipocytes are
major factors regulating this promoter, while promoter
II is regulated by cAMP and gonadotropins. However,
in the presence of breast cancer secreting numerous
regulatory factors, the adipose stromal cells can start
predominantly utilizing promoter II, together with pro-
moters I.3 and I.7. The switch of the promoters depen-
ding on the tissue microenvironment results in enhan-
cement of aromatase gene transcription, protein expres-
sion, and its enzymatic activity compared to the nor-
mal breast tissue. This process is the primary reason for
the increased oestrogen production in adipose stromal
cells surrounding the breast cancer [28–30]. Many breast
tumours can overexpress cyclooxygenase-2 (COX-2)

Figure 1. Schematic diagram of the reaction catalyzed by aromatase
enzyme complex. A — androstenedione, E1 — oestrone, T —
testosterone, E2 — oestradiol, 3b-HSD — 3b-hydroxysteroid
dehydrogenase  NADPH — reduced nicotinamide adenine
dinucleotide phosphate, cytP450 — cytochrome P450

Rycina 1. Schemata reakcji katalizowanych przez kompleks
enzymatyczny aromatazy. A — androstendion, E1 — estron,
T — testosteron, E2 — estradiol, 3b-HSD — dehydrogenaza
3b-hydroksysteroidowa,  NADPH — zredukowany dinukleotyd
nikotynoamidoadeninowy, cytP450 — cytochrom P450
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producing and secreting prostaglandin E2 (PGE2), a po-
werful stimulator of aromatase expression acting thro-
ugh cAMP that regulates transcription from promoter
II in adjacent preadipocytes. Moreover, COX-2 inhibi-
tors have been shown to inhibit aromatase activity of
breast cancer cells [31]. A similar process may be invo-
lved in the development of idiopathic gynaecomastia.
It was shown that in the active phase of breast tissue
proliferation (florid-type gynaecomastia) mRNA expres-
sion of aromatase from promoter II was significantly
increased compared to that in the fibrous type, such as
expression of COX-2 [32].

Aromatase deficiency

Aromatase deficiency is a very rare autosomal recessi-
ve disorder which has been described in less than
20 cases to date [33–46]. It results from various muta-
tions in the coding region of the CYP19A1 gene that
lead to a decrease or loss of enzyme function, and as
a result oestrogen deficiency. Most of the reported mu-
tations are single-base changes in exons IX and X, im-
portant for substrate binding and encoding the heme-
binding region. Such mutations result in codon chan-
ges and single amino acid substitutions or premature
stop-codons leading to the production of a truncated
protein. One of them destroyed an exon-intron splice
junction and resulted in an in-frame insertion of amino
acids within the coding region [34]. The majority of sub-
jects were homozygous for inactivating mutations be-
cause of pregnancies from consanguineous parents, but
some were compound heterozygotes from non-related
parents. Describing patients with aromatase deficiency
and generation of aromatase knock-out mice (ArKO)
enabled detailed study of some new and unexpected
oestrogen functions in both female and male organi-
sms, not only those related to reproduction [47].

An animal model of aromatase deficiency was pro-
duced by disruption of exon IX, which led to enzyme
inactivation and inability to synthesize oestrogens [48].
Visibly, the phenotype of ArKO mice is characterized
by age-progressing obesity, with the excessive accumu-
lation of intra-abdominal fat. Obesity is associated with
increased circulating lipids and hyperinsulinaemia with
insulin resistance. Although the metabolic changes were
present in both sexes, only male ArKO mice were fo-
und to develop liver steatosis that could reverse after
beta-oestradiol treatment [49]. In both sexes, loss of the
bone mineral density was observed. There are distinc-
tive reproductive phenotypes with female infertility
caused by anovulation, dysmorphic, and degenerative
ovaries with numerous haemorrhagic cysts in the fol-
licles and severely undeveloped uteri. In male ArKO

mice, fertility is also compromised by disruption in sper-
matogenesis and impaired sexual behaviour [48–54].

In humans, the first case of aromatase deficiency was
described in 1995 [33], which was much later than defi-
ciencies in other enzymes of steroidogenic pathways.
In both sexes, the first symptoms appear before birth in
the pregnant mothers that develop progressive virili-
sation due to an inability to aromatize androgens by
the placenta. Excessive androgen levels in utero results
in androgenisation of the female foetuses, seen as the
presence of ambiguous genitalia at birth. Thus in all
cases of female pseudohermaphroditism with 46XX
genotype and normal female internal genitalia and ova-
ries present, a diagnosis of aromatase deficiency sho-
uld be considered. The childhood could be unaffected
or there might be symptoms of haemorrhagic cysts of
the ovaries. At the time of puberty a normal adrenar-
che is present; however, there is primary amenorrhea
and lack of breast development. Hormonal tests show
hypergonadotropic hypogonadism with hyperandro-
genism. As a result of androgen excess, acne and hirsu-
tism could appear and the virilisation might progress
with age. The bone age is delayed because oestrogens
are crucial for epiphyseal closure, and decreased bone
mineral density could be observed [33, 35–37, 39, 41,
44]. Only recently, the first case of an adult aromatase
deficient female not treated with oestrogen replacement
therapy since puberty was reported. The results of the
study showed severe bone and joint changes and me-
tabolic phenotype similar to that observed in men with
exception of liver steatosis [55]. Some authors notice that
the phenotypes could be variable or “non-classic”, for
example with some degree of breast and uterine deve-
lopment, depending on some residual aromatase acti-
vity and probable differences in oestrogen and andro-
gen responsiveness [44].

In males, unlike in females, symptoms of aromatase
deficiency appear after puberty. The most characteri-
stic is progressive linear growth into adulthood caused
by the inability of the growth plates to fuse without
oestrogen action, regardless of the relatively high le-
vels of testosterone. The findings included also genu
valgum or knocked knees, eunuchoid body proportions,
delayed bone age, osteopenia, and osteoporosis. The
observed bone phenotype confirms a major role for
oestrogens in the maintenance of bone mass and bone
maturation in men. Similarly to male ArKO mice, male
patients with aromatase deficiency are obese. Metabolic
syndrome characterized by abdominal obesity, dyslipi-
demia, hyperinsulinaemia, and acanthosis nigricans, as
a symptom of insulin resistance, glucose intolerance, or
diabetes mellitus might develop and progress with age.
Fatty livers were described in some patients. Impaired
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fertility and low libido might be present and cryptorchi-
dism was reported [37, 38, 40, 42–47]. Hormonal analy-
ses revealed undetectable oestradiol and oestrone levels
and elevated gonadotropins, while androstenedione and
testosterone levels could be elevated or within normal
range, indicative that oestrogens regulate FSH and LH
secretion in the negative feedback loop in men [56].

The phenotype of aromatase deficient males is si-
milar to that observed in the man reported with an in-
activating mutation in the oestrogen receptor a [57].
Unlike in oestrogen resistance, men with aromatase de-
ficiency treated with exogenous oestrogens showed
a significant improvement of the clinical picture [38, 42,
46, 58]. Positive effects of oestrogen therapy, with no ef-
fect of androgen therapy, on bone maturation, mineral
density, and blood lipid concentrations were described,
and improvement of insulin resistance, hyperglycaemia,
and liver steatohepatitis was shown in some cases.

Aromatase excess

Transgenic mice expressing human aromatase under
the human ubiquitin C promoter (AROM+) or MMTV-
arom+ mice overexpressing aromatase locally in bre-
ast tissue are both very valuable tools to analyze pro-
cesses regulated by oestrogens. They help in understan-
ding molecular mechanisms involved in the formation
of the mammary glands, gynaecomastia, and breast can-
cer [59-60]. Local expression of aromatase in MMTV-
arom+ mice does not significantly influence the circu-
lating oestrogen levels, while in AROM(+) mice, serum
estradiol is elevated together with prolactin, and the
testosterone level is reduced. In males of both strains,
development of mammary glands (gynaecomastia) is
observed, and the process could be stopped or rever-
sed with aromatase inhibitor treatment [61].

There are few families described in the literature
with the oestrogen excess syndrome due to aromatase
overexpression [62–68]. It is characterized by severe
prepubertal gynaecomastia in males and macromastia,
premature puberty, enlarged uterus, and menstrual ir-
regularities in females. Premature fusion of growth pla-
tes and short final stature is present in both sexes. In-
creased aromatization of androgens leads to high se-
rum oestradiol and oestrone levels with low testostero-
ne and androstenedione and suppressed secretion of
gonadotropins. Aromatase inhibitors were effective in
the treatment of these patients [65].

Binder et al. studied a family with seven men in three
generations affected with gynaecomastia that was in-
herited in an autosomal dominant pattern [67]. Their
testosterone levels were decreased while oestrone and
oestradiol were in the high normal range. A strong as-
sociation of the TTTA repeat polymorphism in the

CYP19A1 gene was observed. In a similar family, the
same molecular marker associated with the phenotype
was reported by Stratakis et al. [64]. Increased aromata-
se activity in fibroblasts and strong immunostaining for
aromatase in breast tissue samples from family mem-
bers with gynaecomastia were shown. A new promo-
ter was revealed in the non-coding region of the
CYP19A1 gene. Its activation could possibly lead to the
increased aromatase gene expression.

Other alterations in the promoter region of CYP19A1
were described by Shozu et al. [65]. In three men with
severe gynaecomastia of prepubertal onset and hypo-
gonadotrophic hypogonadism resulting from severe
oestrogen excess, two novel gain-of function mutations
led to the overexpression of aromatase in many tissues.
Heterozygous inversions in the 15q21.2–3 region cau-
sed the constitutively active cryptic promoters that nor-
mally serve to transcribe two ubiquitously expressed
genes — FLJ or TMOD3 — to lie adjacent to the aroma-
tase coding region. Similar regional rearrangements
resulting in the formation of cryptic promoters for aro-
matase gene and its overexpression were described re-
cently by Demura et al. [68].

Different rearrangements in the upstream region of
the aromatase gene and the use of alternative more ac-
tive promoters might happen relatively often and so-
metimes cause subtle symptoms of oestrogen excess,
and thus be unrecognized. Locally enhanced oestrogen
production is impossible to be measured in normal cli-
nical conditions, as it may not significantly affect the
circulating hormones. However, it is thought that even
subtle local aromatase overexpression may increase the
risk of oestrogen dependent conditions, such as breast
and endometrial cancer, endometriosis, gynaecomastia,
and macromastia [69].

Molecular mechanisms involved in some physiolo-
gic or pathologic processes linked to enhanced conver-
sion of androgens to oestrogens still need to be studied.
Increased aromatase activity was shown in aging [70–
–71], obesity [70], hyperthyroidism [72], idiopathic gy-
naecomastia [32, 73], and tumours [74–80] such as testi-
cular tumours, adrenocortical carcinoma, fibrolamellar
hepatocellular carcinoma, giant cell carcinoma of the
lung, and melanoma.

Aromatase gene polymorphisms

Apart from the rare mutations affecting the CYP19A1
gene, more frequent genetic changes called polymor-
phisms can appear. These are changes in DNA sequen-
ce that occur in more than 1% of the population cau-
sing the occurrence of different allelic forms of a gene.
They are inherited and their configuration is unique for
every person.
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More than 80 genetic polymorphisms in the
CYP19A1 gene have been described [81]. Most of them
are single nucleotide polymorphisms (SNPs) that are
present in non-coding regions or they are coding but
synonymous. There are only four non-synonymous
coding SNPs: Trp39Arg and Thr201Met, which do not af-
fect aromatase activity, and Arg264Cys and Met364Thr,
which decrease its enzymatic function. Probably the
most extensively studied are intron IV polymorphisms:
a microsatellite (TTTA)n repeat at position 77, and the
TCT insertion/deletion at position 27. Published data
suggest the association of these polymorphisms with
aromatase activity, sex hormones levels [82–85], and
oestrogen-dependent conditions such as breast cancer
[84, 86-–88], osteoporosis [82–83, 89], endometrial cancer
[90–91], endometriosis [92–93], prostatic cancer [94–95],
and gynaecomastia [64, 67, 96]. Generally, long alleles
of the (TTTA)n polymorphism with more than 8 or
10 repeats and the TCT insertion were associated with
increased incidence of hyperoestrogenic conditions. Ho-
wever, some results are conflicting. It is also not clear
what the molecular mechanisms are, as the polymor-
phisms are found in the intronic sequence. They could
be markers that are in linkage with some other functio-
nal polymorphisms, or they might influence the level
of gene expression. The in vitro studies of Gennari et al.
confirmed increased aromatase activity in skin fibrobla-
sts from subjects with a high-repeat genotype with more
than nine TTTA repeats [82]. Another study by Berste-
in et al. showed the highest aromatase activity in endo-
metrial tumours from patients with (TTTA)11/(TTTA)11

and (TTTA)11/(TTTA)12 genotypes [90].

Aromatase inhibitors

More than a century ago, in 1896, bilateral oophorecto-
my was first shown to be an effective treatment for ad-

vanced breast cancer in pre-menopausal women [97].
Since then, different methods of treatment with the in-
tent of oestrogen deprivation were introduced, such as
hypophysectomy, surgical and then pharmacological
adrenalectomy, selective oestrogen receptor blockage
with tamoxifen, and finally the use of potent aromata-
se inhibitors [98–100].

Aromatase inhibitors (AIs) form a group of drugs that
have the ability to cease the production of oestrogens
by inhibiting their conversion from androgens (Table I).
AIs are used in the endocrine therapy of breast cancer
expressing oestrogen receptors (ER) in postmenopau-
sal women because local oestrogens produced in the
tumour and surrounding cells are major stimulants for
the cancer growth in these patients [21, 28–30, 100–102].

Aminoglutethimide (AG), used firstly as an inhibi-
tor of adrenal steroidogenesis for pharmacological ad-
renalectomy, was later found to block total body aro-
matisation and was rediscovered as a non-selective first
generation aromatase inhibitor [103]. However, its use
in breast cancer patients was limited due to numerous
side effects and the necessity to substitute adrenal ste-
roids with dexamethasone or hydrocortisone. Another
first-generation aromatase inhibitor, used for advanced
breast cancer treatment even before that mechanism of
action was demonstrated, was testolactone [104]. Later
in the 1970s, tamoxifen was introduced, and after pro-
ving to be effective and safer than AG, it became the
first line endocrine therapy for breast cancer [98–99, 105].
At the same time, work on developing selective aroma-
tase inhibitors continued.

The first selective steroidal, suicide inhibitor in the
second generation of AIs was 4-hydroxyandrostenedio-
ne or formestane. It became available for postmenopau-
sal breast cancer treatment in the 1980s in intramuscu-
lar injections. Used as a second line therapy after tamo-
xifen, it was soon proven comparably effective, and the

Table I. Aromatase inhibitors

Tabela I. Inhibitory aromatazy

First generation Aminoglutethimide* Tabl a 250 mg Cytadren, Aminoglutetymid, Orimeten
Testolactone* Tabl a 50 mg Fudestrin, Teslac

Second generation Formestane* Amp a 250 mg Lentardon depot
(4-hydroxyandrostenedione)
Fadrozole* Tabl a 1 mg Afema

Third generation Exemestane Tabl a 25 mg Aromasin
Anastrozole Tabl  a 1 mg Anastralan, AnastroLek, Anastrozol-ratiopharm,

Ansyn, Arimidex, Atrozol, Egistrozol, Symanastrol
Letrozole Tabl a 2.5 mg Aromek, Femara, Lametta, Letrozol Teva
Vorozole* Tabl a 2.5 mg Rivizor

*not registered for sale in Poland
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side effects were improved compared to the first gene-
ration AIs [106–107]. Another second generation AI was
fadrozole [108]. It was classified as a type 2 inhibitor,
being a non-steroidal compound binding reversibly to
the heme group of the enzyme, as opposed to irreversi-
bly binding steroidal analogues of androstenedione
(type 1 inhibitors), called enzyme inactivators. Fadro-
zole use was restricted by its rapid clearance and inhi-
bition of aldosterone synthesis observed with the do-
ses needed for effective aromatase inhibition [109].

The 1990s brought the discovery of the highly po-
tent selective third generation aromatase inhibitors:
exemestane (steroidal type 1 inhibitor), anastrozole, and
letrozole (triazoles, type 2 inhibitors) [100]. They were
shown to have higher potency, specificity, greater effi-
cacy, and less toxicity than first and second generation
drugs [110–112]. Whole body aromatization measure-
ments revealed that the mean degree of enzyme inhi-
bition is more than 97% [113]. The results from the lar-
ge multi-centre randomized trials comparing third ge-
neration AIs to tamoxifen demonstrated their superio-
rity over tamoxifen in the treatment of advanced
postmenopausal breast cancer with respect to efficacy
and safety [114–11]). Subsequently, trials of anastrozo-
le (ATAC) or letrozole (BIG 1-98 FEMTA) versus tamo-
xifen as an adjuvant therapy for early stage cancer, gi-
ven after initial surgery to prevent recurrence, showed
positive results for AIs and led to the approval of third
generation aromatase inhibitors for such use [117–119].
In the neo-adjuvant setting, used before surgical treat-
ment, AIs reduced tumour size more effectively than
tamoxifen [116, 120].

Aromatase inhibitor side effects differ from those
observed with SERM treatment. While tamoxifen incre-
ases endometrial cancer incidence and risk of deep ve-
nous thromboses and pulmonary emboli, AIs are main-
ly associated with accelerated bone loss leading to oste-
openia and osteoporosis, increased risk of fractures, ar-
thralgias, and symptoms of urogenital atrophy. The
frequency of hot flushes, headache, and gastrointesti-
nal symptoms is comparable [114–121].

Currently registered indications for anastrozole in-
clude advanced postmenopausal breast cancer treat-
ment (even ER-negative if there is an initial response to
tamoxifen) and adjuvant therapy of ER-positive can-
cers. Letrozole could be used as a first line therapy in
both advanced and adjuvant settings with ER-positive
tumours, or could be introduced after an initial 5 years
of treatment with tamoxifen. They are preferred to
SERMs, especially in patients with high risk of veno-throm-
botic episodes and those with localised hormone-recep-
tor-positive breast tumours [118]. Exemestane is registe-
red for post-tamoxifen treatment of advanced disease.

The side effects observed during treatment with the
phase III inhibitors are the result of global inhibition of
the catalytic activity of aromatase in all tissues; thus,
the perfect approach would be the blockage of oestro-
gen production only in the breast. The development of
tissue-selective inhibitors of aromatase expression is
plausible because of tissue-specific regulation of
CYP19A1 expression, and it is an extensively researched
subject. A blockade of promoter II/I.3-mediated trans-
cription might provide a breast-specific therapy, thus
factors regulating transcription from those promoters
are being studied. [122]. Other studies concentrate on
the mechanisms of resistance to aromatase inhibitors
and the ways of overcoming that process [123–124].

Apart from their primary application in breast can-
cer, aromatase inhibitors are being experimentally used
in gynaecology and paediatrics, e.g. induction of ovula-
tion in anovulatory patients, endometriosis, short sta-
ture, and gynaecomastia [20, 65, 67, 125–129]. Some of
these data are promising, but they need to be confir-
med in larger randomized, controlled trials.

Conclusions

Years of research in the field of aromatase — on its func-
tion, its gene and structure, complex regulation, and
means of pharmacological inhibition — have led to
some great discoveries and breakthroughs. Describing
the clinical conditions caused by aromatase excess or
deficiency and producing animal models has demon-
strated new and unexpected roles of oestrogens for both
women and men, in many physiological and patholo-
gical processes, not only those related to reproduction.
The dogma that oestrogens are solely female sex hor-
mones was refuted. Most importantly, the basic rese-
arch contributed to the origin of an important group of
drugs: the aromatase inhibitors that are now the most
effective and safe endocrine treatment for breast can-
cer. Further research could lead to the development of
more potent and specific agents and to finding and pro-
ving the efficacy for some new applications.
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